
OS-in-the-loop CEGAR for
Multitasking Embedded Control Software

Dongwoo Kim, Yunja Choi

kdw9242@gmail.com

mailto:kdw9242@gmail.com

Outline:

2STAAR Workshop 2022

• Background

• Multitasking embedded software

• Model checking

• Limitations of existing methods

• The proposed verification method: OiL-CEGAR

• Formal OS model and

• OiL-CEGAR process

• Experiments

• Conclusion & Future work

Multitasking embedded software

3STAAR Workshop 2022

• Each ECU mounts 1 software.
• Each software compiled with

1 OS, 1 App, and 1 Configuration.

A car has hundreds of ECUs

Application

Operating
System

Configuration

Executes
concurrently

Verification of multitasking software

4

• Multitasking is used in most embedded software

✓ usually written in C language

✓ uses multiple tasks

✓ e.g., brake pedals, engines, sensors, actuators, etc.

✓ safety-critical

✓ require comprehensive verification

• Model checking is suitable for comprehensive verification

✓ rigorously verify software systems

STAAR Workshop 2022

Model checking

STAAR Workshop 2022 5

Finite state system 𝑀 :

• Method for checking whether model 𝑀 meets a given specification 𝜙.

Property 𝜙 (a given specification):
(e.g. system never reaches an error state)

A counterexample trace
(showing property violation)

or

System satisfies
the property

• Model checking can be applied to a model or a program code (C, Java, etc)

• However, model checking on multitasking embedded software is very challenging.

Properties

STAAR Workshop 2022 6

• Boolean property (invariants)
(it should be satisfied in all states)

• Assertion property
(it should be satisfied in a state)

• Temporal property (specifies dynamic behavior)
(it should be satisfied in every path)

• Monitoring automata
(it should not remain in error states, infinitely)

• API-call constraint
(a type of monitoring automata having API-call events)

e.g., The running state should never be reached

e.g., All task must be ready eventually

e.g., Variable v cannot have value after statement 32

e.g., When it receives a forward signal, it must move
forward in 100 ticks.

e.g., API-calls f1 and f2 shall be called in pairs.

Limitation: Model checking multitask program code with OS

7STAAR Workshop 2022

• X. Zhu, M. Zhang, J. Guo, X. Li, H. Zhu, and J. He, “Toward a unified executable formal automobile OS kernel and its applications,” IEEE Transactions on Reliability,
2018.

Problems:

1. An enormous load of verification cost is required
as it consumes time and memory exponential to
the size of the program.

2. Usually, performs bounded model checking
(cannot verifies the whole system)

• An OS implementation and application program code are can be directly verified.

Limitation: Model checking multitask program code w/o OS

8STAAR Workshop 2022

• Complexity can be reduced by using highly abstracted OS. (allow all possible context switch)

• Most of reported traces are false alarms having incorrect task execution order

Problems:

1. False-alarm will be reported as there are no
scheduling policy considered

2. Also, performs bounded model checking (cannot
verifies the whole system)

• E. Clarke, et al., “Behavioral consistency of c and verilog programs using bounded model checking,” in Proceedings of the 40th Annual Design Automation Conference, 2003
• L. Yin, et al., “Scheduling constraint based abstraction refinement for multi-threaded program verification,” CoRR, vol. abs/1708.08323, 2017.
• O. Inverso, et al., “Bounded model checking of multi-threaded c programs via lazy sequentialization,” in International Conference on Computer Aided Verification, 2014
• A. Gupta, et al., “Predicate abstraction and refinement for verifying multi-threaded programs,” in Proceedings of the 38th annual ACM SIGPLAN-SIGACT symposium on Principles of

programming languages, 2011
• T. A. Henzinger, et al., “Lazy abstraction,” in Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, 2002

Highly abstracted
operating system

Necessity of operating system

9

0..n

0..n

- id

KernelObject Parameter
use

Alarm

- state :

{held, released}

- priority : int

Resource

invoke

- state : {suspended, ready, running, waiting}

- mode : {standard, extended}

- priority : int

Task

ISR

- API_name

System Call1OS Kernel

1
provide

belong to

- state : {cleared, set}

Event

invoke

0..n

1

0..*

0..*

set
0..*

triggers

1

allocates

Structure of an embedded OS (OSEK/VDX OS)

• Task scheduling involves multiple objects of the OS kernel, including

• Tasks, API functions, resources, events, alarms, and ISRs, etc.

• A sound OS is necessary to improve the verification accuracy

STAAR Workshop 2022

Insight: use of a sound OS model

10

Application
model

Formal Model
for OSEK/VDX OS

OS patterns

Task

Event RQ

Alarm …
Pattern

selection &
Instantiation

Application
code

Abstraction

• OS model correctly schedule an application and remove false alarms

• Model-level verification is efficient as it exclude all the details of programming language.

• Modeling language supports for concurrency, atomicity, and blocking.

OS Specification

verifies OS behavior

<Application verification>

* Y. Choi, “A configurable V&V framework using formal behavioral patterns for OSEK/VDX operating systems,” Journal of Systems and Software, 2018.

STAAR Workshop 2022

List of sound OS models

11

• G. Klein et al., “seL4: Formal verification of an OS kernel,” in Proceedings of the ACM SIGOPS
22nd symposium on Operating systems principles, 2009, pp.207–220.

• H. Zhang, G. Li, Z. Cheng, and J. Xue, “Verifying OSEK/VDX automotive applications: A spin-based
model checking approach,” STVR, 2018.

• Y. Huang, et. al, “Modeling and verifying the code-level OSEK/VDX operating system with CSP,” in
2011 Fifth International Conference on Theoretical Aspects of Software Engineering, 2011, pp.
142–149.

• Y. Choi, “A configurable V&V framework using formal behavioral patterns for OSEK/VDX
operating systems,” Journal of Systems and Software, vol. 137, pp. 563–579, 2018.

• J. Bengtsson, et al. "UPPAAL—a tool suite for automatic verification of real-time systems." International
Hybrid Systems Workshop, 1995.

• X. Zhu, M. Zhang, J. Guo, X. Li, H. Zhu, and J. He, “Toward a unified executable formal automobile
OS kernel and its applications,” IEEE Transactions on Reliability, 2018.

• The correctness of generated OS model is verified based on the OSEK/VDX specification.

STAAR Workshop 2022

• The application code has to be translated into an application model.

• Informally, abstraction groups a set of states into a state.

• Abstraction is necessary due to the heterogeneity
(between languages used for a model and program code)

+ Reduce verification complexity

– Results in high false alarm rate

• False alarms shall be automatically
identified and removed.

Concrete model Abstract model

Traces reaching Running:

• 𝑆𝑈𝑆 ՜
𝐴
𝑅𝐷𝑌

𝑃𝑇
𝑅𝑈𝑁

Traces reaching Running:

• 𝑁𝑂𝑇
𝑃𝑇
𝑅𝑈𝑁

• 𝑁𝑂𝑇՜
𝐴
𝑁𝑂𝑇

𝑃𝑇
𝑅𝑈𝑁

• 𝑁𝑂𝑇
𝑃𝑇
𝑅𝑈𝑁

𝑃𝐷
𝑁𝑂𝑇

𝑃𝑇
𝑅𝑈𝑁

• ...

Insight: use of a sound OS model (cont.)

12STAAR Workshop 2022

Counterexample-Guided Abstraction Refinement (CEGAR)

13

✓Benefits

✓ Scalable

✓ Automated false alarm reduction

Edmund Clarke, et al., "Counterexample-guided abstraction refinement”, CAV 2000.

STAAR Workshop 2022

✓Problems

✓ Certain types of false alarms may remain

✓ Difficulty of feasibility checking
for embedded software

Our approach: OS-in-the-loop CEGAR

OS-in-the-Loop CEGAR (OiL CEGAR)

15

NuSMV CBMC

STAAR Workshop 2022

Model Checking Executability Checking

Model Refinement

OS-in-the-loop CEGAR

16

• A verified OS model is used to enhance the accuracy of the property checking

• A mini-OS is constructed from the counterexample trace for executability checking with improved
accuracy

• Model refinements are performed through trace composition

• Utilized two different model checkers, NuSMV and CBMC, suitable for the two different purposes

Reciprocal abstraction scheme

Verified OS
model

Abstracted
Application

OS footprint
(Mini-OS)

Application

abstracts
application

abstracts OS

Verification

Executability
checking

STAAR Workshop 2022

Formal OS models used in this work

STAAR Workshop 2022 17

• A pattern-based OS model generation framework* is reused

* Y. Choi, “A configurable V&V framework using formal behavioral patterns for OSEK/VDX operating systems,” Journal of Systems and Software, 2018.

Configuration

User
application

(C)

Embedded
softwareCompile & link

Operating
system kernel

(C)

Configuration

User
application

(C)

Embedded
software

Composition

Operating system patterns

NuSMV model
generation

MODULE main

VAR

t1 : Task(1, TRUE, ...);

t2 : Task(2, FALSE, ...);

rq : ReadyQueue(...);

evt : Event(...);

env : Environment(...);

...

Task

Event RQ

Alarm …

Typical construction of embedded software

Application model construction

18

1. CFG construction for each task

2. Control abstraction

• Blocks together a sequence of statements to
be executed without interrupts

3. Data abstraction

• Abstracts visible statement with a unique
symbol

• Major sources of false alarms

• But greatly helps to reduce the complexity

4. Conversion into a task statemachine

• Each transition is guarded to check the
scheduling status of the task

5. Parallel composition of task statemachines

STAAR Workshop 2022

Composition model

19

Infinitely waiting state

Application Task t1

Application Task t2

Task t1

Task t2

Application states for t1 and t2:

t1 executes 𝐵2
1

Internal states for t1
and t2: t1 is running
& t2 is suspending

STAAR Workshop 2022

EventReadyQueue

…

Model checking using NuSMV

20

• Boolean properties and
temporal logic properties in CTL
and LTL can be checked

• Automatically generates a
counterexample trace

• We can supply another module for
monitoring automata with Boolean or
temporal properties.

• We verify assertion and API-call
constraint checking as special types of
monitoring automata

STAAR Workshop 2022

No infinitely waiting state

Static executability checking

22

Platform stub
(returns arbitrary value)

Mini-OS

Application code

CBMC

• Executability of a counterexample is confirmed by checking the reachability of each application block

Calls each task based on the
scheduling information

Executability
of the trace

Used for application
annotation

Used for task
scheduling

STAAR Workshop 2022

Model refinements

24

• The model is refined through trace composition with refinement base

• A refinement base is a statemachine constructed from a subtrace of the
counterexample up to the non-executable statement block.

• Trace composition of two statemachines A and B, retains a trace in A only if an
equivalent trace without leading to an error state exists in B

Counterexample: s0 s1 s2 s3 ...

<Refinement base>

not executable

⨀
…s2

…s4

…s0

…s1

……

𝑒4[¬𝜖]

𝑒1[𝛼]

𝑒2[𝛽]

…

STAAR Workshop 2022

(s3)

s2

…s4

s0

s1

…s3

e3[𝜖] 𝑒4[¬𝜖]

…………

𝑒1[𝛼]

𝑒2[𝛽]

… …

s2

…s4

s0

s1

…s3

e3[𝜖] 𝑒4[¬𝜖]

…………

𝑒1[𝛼]

𝑒2[𝛽]

… …

s2

…s4

s0

s1

…s3

e3[𝜖] 𝑒4[¬𝜖]

…………

𝑒1[𝛼]

𝑒2[𝛽]

… …

False alarm reduction for cycles

STAAR Workshop 2022 25

Counterexamples with cycles:

s0 s1 s2

• Cycles in the composite model make infinite traces reaching error state

• As refinement base remove one trace at a time, these traces can be refined infinitely.

• These traces can be removed if post-condition of the new trace already tested

s4 s3

s0 s1 s2 s4 s3s0..s26

s0 s1 s2 s4 s3s0..s26s0..s26

𝜏0 =
𝜏1 =
𝜏2 =
...

SMT Solver

Unsatisfiable

<Refinement base for cyclic traces>

<Composition model with cycle>

extract post-
condition

¬(𝑝𝑜𝑠𝑡′ ՜ 𝑝𝑜𝑠𝑡)

Experiments

Experiments 1 & 2

• Experiment 1-1: To evaluate effectiveness of property checking

• Experiment 1-2: To evaluate effectiveness of API-call constraint checking

• Experiment 2: To compare the verification accuracy of OiL-CEGAR

Applications

Objective

• TS1. Two example programs running on Erika OS
(small scale / 3 tasks / tens of LoC)

• TS2. An object-follower and a platoon running on Lego Mindstorms NXT
(realistic / 3~4 tasks / hundreds of LoC)

• TS3. Application programs running on Lego Mindstorms NXT
(small scale / 2~3 tasks / ~87 LoC)

• TS4. Test programs from a commercial conformance test suite
(complex / comes from domain experts / 5+tasks / hundreds of LoC)

STAAR Workshop 2022

Effectiveness of OiL-CEGAR : Property checking (2)

STAAR Workshop 2022 30

• TS2. An object-follower and a platoon
running on Lego Mindstorms NXT
(realistic / 3~4 tasks / hundreds of LoC)

• Assuming these are real vehicle,
we verifies properties that should be
satisfied on real vehicles.

• There are 13 properties for

• vehicle rollovers,

• sharp turns,

• sudden stops,

• or liveness properties.

• Compared with testing method
which is good at identifying presence of bugs

Effectiveness of OiL-CEGAR : Property checking (2)

STAAR Workshop 2022 31

OiL-CEGAR Testing

OiL-CEGAR
• Founds all the property violations

while testing cannot find 3 violations
(testing finds 86% of prop. violation)

• But two method cannot verify the 5
properties (expected to be satisfied)

• OiL-CEGAR sometimes finds property
violations faster than testing method

Test environment:
• Ubuntu Linux-based machine with a 3.3Ghz Intel Xeon Gold 6234 CPU and 192 GB of memory.
• NuSMV version 2.6.0 with dynamic variable reordering & cone-of-influence reduction.
• CBMC version 5.10 for executability checking

Conclusion

STAAR Workshop 2022 35

• This thesis proposed a model checking technique
for the verification of multitasking embedded applications.

• Model checking is applied to the formal OS model and the abstraction model.

• Executability of a trace was checked on the application code with a mini-OS.

• In model refinements, a refinement base is introduced to remove false alarm traces.

• TORCHE is accurate and efficient for verifying multitasking embedded applications.

• TORCHE is accurate as it includes not only formal operating system
but also, application program code.

• TORCHE is also efficient as it abstracts applications and operating systems
in model checking and executability checking, one at a time.

Future work

STAAR Workshop 2022 36

Improving
performance

Reducing
false alarms

Infinite
refinements

Support for
more platforms

• Reuse of NuSMV checking
data after refinement

• Configuration slicing

• Removing missed true
alarm

• Improving executability
checking

• Relative timing

• Hardware abstraction

• Use of non-deterministic
interrupts

• Use of finite
counterexample trace

• Verification over fixed-size
memory

• Verification of infinite
spaced program

• Support other OS and
platforms

• Support general OS such
as Linux or Windows...

37

