0S-in-the-loop CEGAR for
Multitasking Embedded Control Software

Dongwoo Kim, Yunja Choi
kdw9242@gmail.com

A A Software Safety
‘%QQEE%IORHH?_*?-’:JH KNnu lelegﬁFA,E?J}l(\IIVERSITY Fnaineerina LAB

mailto:kdw9242@gmail.com

Outline:

« Background
« Multitasking embedded software

« Model checking
« Limitations of existing methods

« The proposed verification method: OiL-CEGAR
e Formal OS model and
e OIL-CEGAR process

« Experiments

e Conclusion & Future work

KT YooK STAAR Workshop 2022

Multitasking embedded software SEaUs

concurrently

e« Each ECU mounts 1 software.
e Each software compiled with

S
1 OS, 1 App, and 1 Configuration. TasK

Configuration| Application

Operating
System

A car has hundreds of ECUs

KN U KYuNGPook STAAR Workshop 2022 3

Verification of multitasking software

* Multitasking is used in most embedded software

v" usually written in C language

v’ uses multiple tasks

v’ e.g., brake pedals, engines, sensors, actuators, etc.

v’ safety-critical

v’ require comprehensive verification

* Model checking is suitable for comprehensive verification

v’ rigorously verify software systems

KL KYENor00K STAAR Workshop 2022 4

Model checking

* Method for checking whether model M meets a given specification ¢.

Finite state system M : -
System satisfies

% the property
LY > |

M = or
Property ¢ (a given specification):

> | Ny A counterexample trace
(e.g. system never reaches an error state) W

(showing property violation)
* Model checking can be applied to a model or a program code (C, Java, etc)

* However, model checking on multitasking embedded software is very challenging.

KL KYUNCEO0K STAAR Workshop 2022 5

Properties

Kn

Boolean property (invariants)

(it should be satisfied in all states)

e.g., The running state should never be reached

Assertion property
(it should be satisfied in a state)

e.g., Variable v cannot have value after statement 32

Temporal property (specifies dynamic behavior)
(it should be satisfied in every path)

e.g., All task must be ready eventually

KYUNGPOOK

NATIONAL UNIVERSITY

* Monitoring automata
(it should not remain in error states, infinitely)

receive_signal
/counter=0

move_forward

/counter=counter+1
Al

[counter=100]

e.g., When it receives a forward signal, it must move
forward in 100 ticks.

* API-call constraint
(a type of monitoring automata having API-call events)

(1) InPairs(f,,12)

f

/pop()

l:: /

falstack size=18&top().param=param]

f[top().param!=param]

f1/push(f1);
f2[top().param=param]
pop()

e.g., APl-calls f1 and f2 shall be called in pairs.

STAAR Workshop 2022

Limitation: Model checking multitask program code with OS

* An OS implementation and application program code are can be directly verified.

— Embedded
o System Code
v

Task t1 Task t2

Problems:

1. Anenormous load of verification cost is required
as it consumes time and memory exponential to
the size of the program.

2. Usually, performs bounded model checking
(cannot verifies the whole system)

X. Zhu, M. Zhang, J. Guo, X. Li, H. Zhu, and J. He, “Toward a unified executable formal automobile OS kernel and its applications,” IEEE Transactions on Reliability,
2018.

KNU EEXERK STAAR Workshop 2022 7

Limitation: Model checking multitask program code w/o OS

* Complexity can be reduced by using highly abstracted OS. (llow all possible context switch)

* Most of reported traces are false alarms having incorrect task execution order

P

| nghly abstracted -
operating system

i\

Embedded
System Code

Task t1 Task t2

Problems:

1. False-alarm will be reported as there are no
scheduling policy considered

2. Also, performs bounded model checking (cannot
verifies the whole system)

y

E. Clarke, et al., "Behavioral consistency of ¢ and verilog programs using bounded model checking,” in Proceedings of the 40th Annual Design Automation Conference, 2003

L. Yin, et al, "Scheduling constraint based abstraction refinement for multi-threaded program verification,” CoRR, vol. abs/1708.08323, 2017.

O. Inverso, et al., “Bounded model checking of multi-threaded c programs via lazy sequentialization,” in International Conference on Computer Aided Verification, 2014

A. Gupta, et al, "Predicate abstraction and refinement for verifying multi-threaded programs,” in Proceedings of the 38th annual ACM SIGPLAN-SIGACT symposium on Principles of

programming languages, 2011
* T. A Henzinger, et al, “Lazy abstraction,” in Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, 2002

KI'I A STAAR Workshop 2022 8

NATIONAL UNIVERSITY

Necessity of operating system

* Task scheduling involves multiple objects of the OS kernel, including

* Tasks, APl functions, resources, events, alarms, and ISRs, etc.

* A sound OS is necessary to improve the verification accuracy

OS Kernel KernelObject Parameter |g, 1| System Call %
~ use. L S
- id < - API_name 0.

invoke invoke

Resource Alarm 0..* . Task 1 1
- state : : i iti
~ - state : {suspended, ready, running, waiting}
{hel'd,_reI?e)sed} belone to | - Mode : {standard, extended} ISR
- priority : int — 28T oriority - int
- state : {cleared, set} 4k triggers)
allocates

Structure of an embedded OS (OSEK/VDX OS)

KL KYUNCEO0K STAAR Workshop 2022

Insight: use of a sound OS model

* OS model correctly schedule an application and remove false alarms
* Model-level verification is efficient as it exclude all the details of programming language.

* Modeling language supports for concurrency, atomicity, and blocking.

figurati I
Configuration OS Specification
TASK t1 {...}
TASK t2 {...} N 0
EVENT el {...} Application
verifies OS behavior code

: _ Abstraction
_i| Formal Model + Application
| for OSEK/VDX OS model

OS patterns
Task Alarm

Event RQ

Pattern
selection &

<Application verification>

*Y. Choi, "A configurable V&V framework using formal behavioral patterns for OSEK/VDX operating systems,” Journal of Systems and Software, 2018.

KL KYUNCEO0K STAAR Workshop 2022 10

List of sound OS models

KN

G. Klein et al,, “seL4: Formal verification of an OS kernel," in Proceedings of the ACM SIGOPS
22nd symposium on Operating systems principles, 2009, pp.207-220.

H. Zhang, G. Li, Z. Cheng, and J. Xue, "Verifying OSEK/VDX automotive applications: A spin-based
model checking approach,” STVR, 2018.

Y. Huang, et. al, “"Modeling and verifying the code-level OSEK/VDX operating system with CSP" in
2011 Fifth International Conference on Theoretical Aspects of Software Engineering, 2011, pp.
142-149.

Y. Choi, “A configurable V&V framework using formal behavioral patterns for OSEK/VDX
operating systems,” Journal of Systems and Software, vol. 137, pp. 563-579, 2018.

J. Bengtsson, et al. "UPPAAL—a tool suite for automatic verification of real-time systems." International
Hybrid Systems Workshop, 1995.

X. Zhu, M. Zhang, J. Guo, X. Li, H. Zhu, and J. He, “Toward a unified executable formal automobile
OS kernel and its applications,” IEEE Transactions on Reliability, 2018.

The correctness of generated OS model is verified based on the OSEK/VDX specification.

SYuNerIK STAAR Workshop 2022

11

Insight: use of a sound OS model (cont.)

KN

The application code has to be translated into an application model.
Informally, abstraction groups a set of states into a state.

Abstraction is necessary due to the heterogeneity
(between languages used for a model and program code)

+ Reduce verification complexity Concrete model ‘ Abstract model

— Results in high false alarm rate

False alarms shall be automatically
identified and removed.

Traces reaching Running: Traces reaching Running:
A PT PT

* SUS->RDY—-RUN ®* NOT—RUN
A PT

* NOT-NOT—-RUN

PT PD PT
* NOT—-RUN — NOT — RUN

SYuNerIK STAAR Workshop 2022 12

Counterexample-Guided Abstraction Refinement (CEGAR)

Edmund Clarke, et al., "Counterexample-guided abstraction refinement”, CAV 2000.

M M « reﬁne(ﬁ ,T) [—M
sl -
~ unsatisfiable .)
ME g > Is 7 feasible?
a counterexample T
satisfiable ‘yes
ME @ ME@p,t
v Benefits v Problems
v Scalable v" Certain types of false alarms may remain
v" Automated false alarm reduction v’ Difficulty of feasibility checking

for embedded software

KL KYUNCEO0K STAAR Workshop 2022 13

* K

* %

**

Our approach: OS-in-the-loop CEGAR

NNNNNNNNNNNNNNNNNN

OS-in-the-Loop CEGAR (OiL CEGAR)

M=M ||M,£ < M,
o5 [Mapy [Model Refinement] pp
‘ ‘ M~ MQOA(T) = ‘
[Model Checking] [Executability Checking |
unsatisfiable
ME ¢ — M (0)||M,, E"
a counterexample 7 s app R
| Nusmv |
satisfiable yes
MOS' |Mapp |: (p Mosl |Mapp % (p5 T

KINU KRN0 STAAR Workshop 2022 15

OS-in-the-loop CEGAR

Ve

~N

. abstracts M ={M, ||| M, . M,,,
Verification application [Model Refinement]
Abstracted M« MO A(7)
Application s o N
e Executabilit
Verified OS . ¥ Model Checking Executability Checking]
checking - —
model ME ¢ unsatisfiable M (0)||M,, E"
N) Application a counterexample 7 os app__R
\ OS footprint catisfiable o
abstracts OS (Mini-OS) g
- J
Reciprocal abstraction scheme M| IM,,, E @ M| IM,,, ¥ ¢.t

* A verified OS model is used to enhance the accuracy of the property checking

°* A mini-OS is constructed from the counterexample trace for executability checking with improved
accuracy

* Model refinements are performed through trace composition

e Utilized two different model checkers, NuSMV and CBMC, suitable for the two different purposes

KYUNGPOOK

NATIONAL UNIVERSITY

Kn

STAAR Workshop 2022 16

— . M
M=M,]| Mw,,,“ app

Formal OS models used in this work lf%ﬁ'

satisfiable yes

M |I1M,,, B @ M, M, ¥ 9.7

* A pattern-based OS model generation framework* is reused

Operating system patterns
Operating . - Task Alarm
system kernel Configuration
(©) TASK t1 {) Event RQ
. e 0 /—
Configuration - TASK t2 {...}
g EVENT el {...}
R
User User .
L . Embedded licati Composition Embedded
application » Compile & link application > > o
() P software (©) software
J
. . MODULE main
Typical construction of embedded software VAR

tl : Task(l, TRUE, ...);
t2 : Task(2, FALSE, ...);
rg : ReadyQueue(...);
evt : Event(...); NuSMV model
env : Environment(...); generation

*Y. Choi, "A configurable V&V framework using formal behavioral patterns for OSEK/VDX operating systems,” Journal of Systems and Software, 2018.

KL KYUNCEO0K STAAR Workshop 2022 17

NATIONAL UNIVERSITY

Application model construction

1.
2.

3.

4,

5. Parallel composition of task statemachines

KN

CFG construction for each task

Control abstraction

* Blocks together a sequence of statements to
be executed without interrupts

Data abstraction

* Abstracts visible statement with a unique
symbol

* Major sources of false alarms

* But greatly helps to reduce the complexity

Conversion into a task statemachine

* Each transition is guarded to check the
scheduling status of the task

KYUNGPOOK

NATIONAL UNIVERSITY

|

Application Program

01:
02:
03:
04:
05:
06:
07:
08:

int wait_sw = OFF;
Task(tl) {
int local_var;
int *p;
p = &local_var;
local_var = ON;
ActivateTask(t2);
if(wait_sw==0N) {
wait_sw = ON;
local_var = OFF;
*p = local_var;
SetEvent(t2, el);

}
ActivateTask(t2);

TerminateTask();

Task(t2) {
int t2_sw;

11: t2_sw = OFF;

12: if(wait_sw!=0N) {
13: wait_sw = ON;
14: WaitEvent(el);

}

15: TerminateTask();

}

System Configuration

TASK t1 {

}

autostart = true;
priority = 1;

TASK t2 {
priority = 2;

}
EVENT el {}; ...

mwm

it

STAAR Workshop 2022

18

Composition model

-

[Jinternal_state==running]
1 4
BY ActivatcTask(2)
1 Y
B, D

Task t1

wait terminate

(Rumning)
preempt

Suspended

[internal_state==suspended]

sS4 e (R p2)

a —
(e activate) Abplication Task Internal states for t1 || Application states for t1 and t2: /]
_ pplication Taskj 4 2. 11 is running || t1 executes B2
e & t2 is suspending [B;][Bﬂ E_b[HDYJ o [le[sz
4 N\ 3
2
Task t2 s8 /] s14 “H s B | init
[...A €]
wait m terminate | | | By Frmmmmmy
C.Ael s9 -RUN .sus m.init
oo » I
CETETEDE ° ROYJRUN | B; | B
; ' 5 e
s11 (pl 2 1 2
9 release activate) <Task t2> L— RUN WIT B_} rBf » HDYJ fibit lkBTJEB"i [e] HDYJ LY [B’."J[B7J
. . | 2 .
Application Task t2 ROYJRUN | B;) B,

ReadyQueue [Event | \ / 12 |
. RUN WIT B8] B;f‘

’ “ Infinitely waiting state

r
2
Design
r3 error
\(et
J

LD

STAAR Workshop 2022 19

M= Mn.\'l |Mn,up Mupp

Model checking using NuSMV | e

ME
¢ a counterexample 7 o8
satisfiable yes
M, | 1M, B M, || M, 2 g7

[HUN(SU% |n|t A&lDY RDY RUN Bl B2
TR t]_|_> S*zm s Bl L) * Boolean properties and
HDY

5 temporal logic properties in CTL
“Trov AN ,;}[[eus] (5] and LTL can be checked
S7RUN wr Rl 2]e f[nov RUN 1}{ 2) i RUN sus| | By | init .
Ul [B 5, . I 5 o I * Automatically generates a
@ pIE) [(B SE@M@ counterexample trace
SL%JM < (B

9
(Run (it (B]| B?) * We can supply another module for

S“tRUN e +[BF{J[BZ ‘[Hov]nuu @lj@ monitoring automata with Boolean or
) temporal properties.

i;HUN e [BIIBZJ rov|RUN (B [B2 [] rov|RUN [B1 | B2
5 24 [le] * We verify assertion and API-call
rov R (B;By) (rov]run (B]] B2 constraint checking as special types of
s12 Y monitoring automata

o L 15 o] (B
Sﬂ(@,us Jwrr [init | BZD S2fg?aj[susj [init][mitD No infinitely waiting state

KT YooK STAAR Workshop 2022 20

NATIONAL UNIVERSITY

Static executability checking

Task execution

s12

sequence s13

o]

Used for application .
annotation

Used for task
scheduling

Block execution
sequence

Calls each task based on the
scheduling information

Mini-OS

Platform stub
(returns arbitrary value)

|

m—)

CBMC

!

Executability
of the trace

Executability of a counterexample is confirmed by checking the reachability of each application block

Kn

KYUNGPOOK

NATIONAL UNIVERSITY

STAAR Workshop 2022

22

M= M, || M,

Model refinements

Mm

M

unsatisfiable

MEg
satisfiable

1M, & @

The model is refined through trace composition with refinement base

A refinement base is a statemachine constructed from a subtrace of the

counterexample up to the non-executable statement block.

a counterexample T

app

17 M« MO A7) ﬁ‘r (

Trace composition of two statemachines A and B, retains a trace in A only if an
equivalent trace without leading to an error state exists in B

sO LRUN Lsusj (Blljﬂinit

deila]

‘ ﬂRUN [sus} (Bll)(init

de218]

s3

s4

T

Kn

KYUNGPOOK

NATIONAL UNIVERSITY

Counterexample: (0 J(Cs1 JCs2)03 002

not executable

| s2 [Rrun|(sus| [B init | =f e[f]
es[e] E; I\-34[_"9] @
<R

=

s3)

STAAR Workshop 2022

sO
ve1 [a]
I sl
vez (8]
s2

24

M= M| | M, app

[M« M oA e L

False alarm reduction for cycles e F

My 1M, F @ M, || M, @7

* Cycles in the composite model make infinite traces reaching error state

* As refinement base remove one trace at a time, these traces can be refined infinitely.

* These traces can be removed if post-condition of the new trace already tested

Counterexamples with cycles:

To = (s J(Cst JCs2 JUsa JLs3

§

Tl = (_s0..s26
Ty = (50526) (50.:526 J=e3=136s2) (2)13)
extract post-

condition

v v
—(post’ — post)

v'. D 51.26
Unsatisfiable ‘
_ SMT Solver

s2 1 5
: rov Run | B[B2)
52 l[!e]v
| W9 (5]]5?)

§2!

!
AN (808) (B | ini

[it | init

<Composition model with cycle>

<Refinement base for cyclic traces>

KT YooK STAAR Workshop 2022 25

NATIONAL UNIVERSITY

»
»*

* ___ X
L

Experimeﬂts

Experiments 1 & 2

Objective

Applications

Knu

KYUNGPOOK

NATIONAL UNIVERSITY

Experiment 1-1: To evaluate effectiveness of property checking
Experiment 1-2: To evaluate effectiveness of API-call constraint checking

Experiment 2: To compare the verification accuracy of OiL-CEGAR

TS1. Two example programs running on Erika OS
(small scale / 3 tasks / tens of LoC)

TS2. An object-follower and a platoon running on Lego Mindstorms NXT
(realistic / 3~4 tasks / hundreds of LoC)

TS3. Application programs running on Lego Mindstorms NXT
(small scale / 2~3 tasks / ~87 LoC)

TS4. Test programs from a commercial conformance test suite
(complex / comes from domain experts / 5+tasks / hundreds of LoC)

STAAR Workshop 2022

Effectiveness of OiL-CEGAR : Property checking (2)

KN

TS2. An object-follower and a platoon

prop. | prop. kind | description

ru nning on Lego Mindstorms NXT pl | Boolean | During high-speed driving at 150 km, sudden turns shall not
e o permitted, so a vehicle should not rollover.
(realIStIC / 3~4 taSkS / hundreds Of LOC) p2 Boolean | During high-speed driving at 60 km, sudden turns shall not
permitted, so a vehicle should not rollover.
H H p3 LTL Do not decelerate beyond a certain force when making a sudden
Assuming these are real vehicle, o
we ve I’IfleS p ro pe rtles that Shou |d be p4 Boolean | Steering beyond a certain level should not occur.
HP o . pS Boolean | A value for the vehicle to go straight can be assigned to the
satisfied on real vehicles. o
p6 Boolean | It can receive input values from sensors.
The re are 1 3 pro pe rt|es for p7 Monitor | When the control task receives a forward signal, it must move
forward.
. p8 Monitor | When the control task receives a backward signal, it must move
* vehicle rollovers, backward.
p9 Boolean | Sensor input for moving forward from the vehicle in front can
be transmitted to the sensor, and the vehicle control variable
[J ’
sha e tu rns, shall be updated.
pl0 | Assertion | When the vehicle moves forward and steers, the desired steer-
1 Sl_ldden StO pS, ing degree should be reflected in the motor considering the
maximum motor output.
° . . pll Assertion | When the vehicle moves backward and steers, the desired
or I|VeneSS propertles‘ steering degree should be reflected in the motor considering
the maximum motor output.
Com pa red W|th tes‘“ng method pl2 | Assertion | When the vehicle moves forward, all wheels must rotate for-
.) . o ward.
which is gOOd at Identlfymg presence of bUgS pl3 | Assertion | When the vehicle moves backward, all wheels must rotate

KYUNGPOOK

NATIONAL UNIVERSITY

backwards.

STAAR Workshop 2022

30

Effectiveness of OiL-CEGAR : Property checking (2)

OiL-CEGAR

Testing

A Expected O1L-CEGAR verification O1L-CEGAR exec. chk. | Total ali CROWN (option: -hybrid)

PP- PTOP- | esult Time(s) [Mem(MB) [Ien(trace) | #R | Time(s)| Mem(MB) |time(s) resu Time_first(s) [Mem_first(s) [Mem_total(s) [found [TA ratio | result
pl | satsfied | 5428 207 106|558 | 10.976 1201 | 18.000 [timeout - - 1.I19 0 - timeout
p2 | violated 6 39 36| 4 15 268 37 | violated 46 41 1646 604 10/10 | violated
p3 | violated 18 a7 67] 12 69 631 127 | violated 60 39 1375 79| T0/10 | violated
pd | violat . I [violated I8 36 162 201| 10/10 | violated
p5 [violt| OiL-CEGAR 3 violated 976 T09 T38| 44| 10/10 | violated
p6 | violat . . 6 [violated 1 16 1777 626 10/10 | violated

obj_follower 57 i © Founds all the property violations 3 [violated 51 77 471 10| 10710 | violted
p8 | violat while testing cannot find 3 violations 2| violated 917 94 142 2] 212 violated
pY | violat 6 [violated 641 76 113 20| 10/10 | violated
pl0 | violat (te5t|ng finds 86% of prop. V|O|at|0n) 8 [violated 34 43 164 46| 10/10 | violated
pll | violat . 5 [violated 654 63 122 21 272 violated
p12 [viol| * But two method cannot verify the 5 5 violated : £ 6] 0] - [wotfound
pI3 | violat ; i fi 8 | violated - - 146 0 - not found
pl | violat pr-opertles (eXpeC'Fed to _be SatISfIEd) b3 | violated 110 22 90| 157| 10/10 | violated
p2 |violail * QiL-CEGAR sometimes finds property b5 [violated 3 16 88| 714 10/10 | violated
p3 | violat . . . violated - - 90 0 - not found
pi [viol| Violations faster than testing method 3 [violated 7 16 T00| 868 | T0/10 | violated
p5> | violatte >r >r T TTo =37 | violated 13 17 101 | 957 10/10 | violated
p6 | violated 1 26 41 0 1 31 7 [violated 1 16 541 790| 10/10 | violated

osek_platoon | p7 | violated 604 90 66| 64 348 312 1130 |violated 25 17 57 48| 10/10 | violated
p8 | satsfied | 13.875 261 106 [588 2414 337 18,000 [timeout - - 57 0 - timeout
p9 | violated I 29 6] 0 I 42 I'|violated 22 16 R 58] TO/T0 | violated
pI0 | violated 31 46 327 11 I5 114 78 | violated I 16 TI51 1,329 T0/10 | violated
pIT | satsfied | T1.739 255 116|808 4087 3421 18.000 [timeout - - 124 0 - timeout
pl2 | satsfied | T1.291 215 116 [909 4250 319 18.000 [timeout - - 124 0 - timeout
pI3 | satisfied | 11435 214 67904 4137 298 | 18.000 [timeout - - 124 i} - timeout

Test environment:

. Ubuntu Linux-based machine with a 3.3Ghz Intel Xeon Gold 6234 CPU and 192 GB of memory.
. NuSMV version 2.6.0 with dynamic variable reordering & cone-of-influence reduction.
. CBMC version 5.10 for executability checking

Kn

KYUNGPOOK

NATIONAL UNIVERSITY

STAAR Workshop 2022

31

Conclusion

* This thesis proposed a model checking technique
for the verification of multitasking embedded applications.

* Model checking is applied to the formal OS model and the abstraction model.

Executability of a trace was checked on the application code with a mini-OS.

In model refinements, a refinement base is introduced to remove false alarm traces.

TORCHE is accurate and efficient for verifying multitasking embedded applications.

TORCHE is accurate as it includes not only formal operating system
but also, application program code.

TORCHE is also efficient as it abstracts applications and operating systems
in model checking and executability checking, one at a time.

KN U KYUNGRooK STAAR Workshop 2022 35

Future work

Improving
performance

Reuse of NuSMV checking
data after refinement

Configuration slicing

Removing missed true
alarm

Improving executability
checking

I(n KYUNGPOOK
NATIONAL UNIVERSITY

Reducing Infinite
false alarms refinements
Relative timing * Verification over fixed-size *

memory
Hardware abstraction
* Verification of infinite
Use of non-deterministic spaced program

interrupts

Use of finite
counterexample trace

STAAR Workshop 2022

Support for
more platforms

Support other OS and
platforms

Support general OS such
as Linux or Windows...

36

